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In this study, the shooting method and the continuation technique are applied to

investigate the large amplitude motion and non-planar motion characteristic of the

inclined cable subject to the support motion. Considering the geometric nonlinearity

and the quasi-static assumption, a spatial discrete model of the cable is formulated,

which is used to determine the frequency–response curves of the cable. The effects of

the amplitude of the support motion and the inclined angle on the coupling motion of

the inclined cable are investigated. It is shown that the coupling motion may occur, and

the motions play a noticeable role on the axial tensions of the cable. Also, the non-

periodic spatial motions of the cable are examined through direct simulations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their economic design and esthetic appearance, stay cables are very efficient structural components in cable-
stayed bridges. However, owing to their large flexibility, relatively small mass and extremely low inherent damping, cables
are often susceptible to exhibit large amplitude vibration due to the motion of the bridge deck and towers. Because large-
amplitude vibrations of cables play an important role in the undue stresses and fatigue in the anchorage at the deck or
tower and in the cables themselves, this kind of large amplitude vibration of stay cables have been extensively investigated
in the past decade [1].

Cai and Chen [2] applied the numerical simulation to investigate the nonlinear response of the inclined cable subject to
parametric and external resonances. Lilien and Pinto da Costa [3] investigated the large amplitude vibrations of stay cable
due to the parametric excitation. Pinto da Costa et al. [4] studied the oscillations of stay cables due to periodic motions of
the girder or pylon. Berlioz and Lamarque [5] made the theoretical and experimental investigations of an inclined cable
subject to the boundary motion condition, and they also presented a simple cable model to study nonlinear oscillation.
Georgakis and Taylor [6] investigated the nonlinear dynamics of cable stays, induced by sinusoidal cable-plane structural
vibrations. Recently, based on the LQR control and the Bingham model of MR dampers, Ying et al. [7] developed a semi-
active optimal control method for stay cables to studied the instability of controlled inclined stay cables under support
motions. Although the support motions may result in the large-amplitude vibrations, the axial support motion can also
generate a control force [8].
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In recent years, the wide applications of cable-stayed bridge systems have attracted increasing attention on the modal
interactions of cable-stayed beam [9–15], where the nonlinear interaction between the global modes and local modes has
been addressed. Furthermore, Caetano et al. [16] applied the on-site measurement results and a 3-D finite element model
of the Guadiana Bridge to investigate the different cable–deck interaction of the bridge under environmental excitations.
Their results showed that the one-to-one resonance condition between global and local modes can lead to the linear
interaction and a modal shape distortion. The on-site measurement results also showed that the cable–deck interaction
may excite the large amplitude vibration of stay cable through the support motion produced by the deck vibration. These
researches deepen our understanding on the excitation mechanism of the large amplitude of stay cables caused by deck
and/or tower motions.

In general, the single-degree-of-freedom (sdof) cable model is widely applied in the most previous studies. However,
this kind of model cannot be used to investigate the spatial finite oscillations of cables due to their overall flexibility.
Therefore, it ignores some inherent prosperities such as the overall flexibility. Moreover, any nonlinear interactions among
all the modes, directly or indirectly excited, can not be considered. Therefore, a more accurate spatial discrete model is
desired in order to capture the dynamic characteristics and reflect the overall flexibility. Generally speaking, a single-mode
Galerkin discretization may lead to significant quantitative or even qualitative errors. Therefore, the multi-mode discrete
models were applied to investigate the nonlinear vibration of suspended cable with the help of the continuation technique
[17,18]. However, these studies only focused on the direct external excitation, the results did not show the nonlinear
character of the stay cables subject to the support motion.

In the present paper, the large-amplitude vibration of the inclined cable subject to the support motions is investigated.
Applying the Hamilton principle, the nonlinear governing equations of the cable are derived. The bending, torsional and
shear rigidities are neglected. Then, multi-mode expansions of the displacements are applied to obtain a discrete cable
model. Numerical analysis are performed by means of the shooting method and the continuation technique. The spatial
motion characteristic of the inclined cable is discussed in detail.

2. Mathematical models

As shown in Fig. 1, an inclined homogenous elastic cable subject to a vertical sinusoidal support motion: Z sinot (where
Z and o denote the amplitude and frequency of the support motion, respectively), is considered. A Cartesian coordinate
system O� xyz is chosen, with the origin O placed at the left fixed support of the cable. The solid lines denote the static and
dynamic configurations. The displacements of the point are denoted by uðx; tÞ, vðx; tÞ and wðx; tÞ along the x, y and
z directions, respectively. In the following section, applying the Hamilton principle and the quasi-static assumption [19], we
will derive a theoretical model that describes the nonlinear vibrations of the inclined cable, where the bending, torsional
and shear rigidities of the cable are neglected.

By assuming the Lagrangian strain as the strain measure, the axial Lagrangian strain of the inclined cable can be written
as [20]

�ðx; tÞ ¼ u0 þ y0v0 þ
v02 þw02

2
, (1)

where the prime indicates differentiation with respect to the coordinate x; yðxÞ is the static configuration of the cable.
The equations of motions can be obtained by means of the Hamilton principle,

m €uþ cu _u� EA u0 þ y0v0 þ
v02 þw02

2

" #( )0
¼ 0, (2)
Fig. 1. The theoretical model of the inclined cable subject to the support motion.
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m €vþ cv _v� Hv0 þ EAðy0 þ v0Þ u0 þ y0v0 þ
v02 þw02

2

" #( )0
¼ 0, (3)

m €wþ cw _w� Hw0 þ EAw0 u0 þ y0v0 þ
v02 þw02

2

" #( )0
¼ 0, (4)

where m is the mass per unit length; E is the Young modulus; A is the area of the cross-section; cu, cv and cw are the viscous
damping coefficients per unit length; the dot indicates differentiation with respect to time t; H is the axial component of
the initial tension and H5EA and g is the gravitational acceleration. The boundary conditions can be written as

uð0; tÞ ¼ vð0; tÞ ¼ wð0; tÞ ¼ wðl; tÞ ¼ 0; uðl; tÞ ¼ Z sin y sinot; vðl; tÞ ¼ Z cos y sinot, (5)

where l is the cable span and y is the inclined angle. Obviously, the boundary conditions of the inclined cable are
nonhomogeneous both in the axial displacement component uðx; tÞ and in-plane transverse displacement component
vðx; tÞ. Under the quasi-static assumption, neglecting the acceleration and velocity term in Eq. (2), and taking into account
the boundary conditions, the displacement uðx; tÞ can be expressed by

uðx; tÞ ¼ Z sin y sinot
x

l
þ

x

l

Z l

0
y0v0 þ

v02 þw02

2

 !
dx�

Z x

0
y0v0 þ

v02 þw02

2

 !
dx. (6)

Proceeding in a manner similar to Refs. [19,20], the non-dimensional form of the equations of motion of the cable can be
written as

€vþ cv _v�
a
p2
ðy00 þ v00Þ z0 sin y sinOt þ

Z 1

0
y0v0 þ

v02 þw02

2

 !
dx

( )
¼ 0, (7)

€wþ cw _w�
a
p2

w00 z0 sin y sinOt þ

Z 1

0
y0v0 þ

v02 þw02

2

 !
dx

( )
¼ 0, (8)

where the following non-dimensional variables are introduced,

x� ¼ x=l; y� ¼ y=l; z0 ¼ Z=l; v� ¼ v=l; w� ¼ w=l; a ¼ EA=H; t� ¼ tp=l
ffiffiffiffiffiffiffiffiffiffiffi
H=m

p
,

O ¼ ol=p
ffiffiffiffiffiffiffiffiffiffiffi
m=H

p
; c�v ¼ cvl=ðpmÞ

ffiffiffiffiffiffiffiffiffiffiffi
m=H

p
; c�w ¼ cwl=ðpmÞ

ffiffiffiffiffiffiffiffiffiffiffi
m=H

p
. (9)

Also, the asterisks in Eqs. (7) and (8) are dropped for simplicity.
2.1. Discrete model

For the nonhomogeneous boundary value problem, it is convenient to introduce a suitable chosen particular solution,
which satisfies the nonhomogeneous boundary conditions, to transform the nonhomogeneous problem to homogeneous
one. Then the solution of homogeneous problem can be described by the Fourier series with the eigenfunctions of the
homogeneous problem. In this study, according to the boundary condition of the inclined cable, the non-dimensional
displacements vðx; tÞ and wðx; tÞ can be expressed by the expansions

vðx; tÞ ¼
XN
i¼1

fiðxÞqivðtÞ þ xz0 cosy sinOt; wðx; tÞ ¼
XM
i¼1

fiðxÞqiwðtÞ, (10)

where qivðtÞ and qiwðtÞ are the generalized coordinates, and fiðxÞ ¼
ffiffiffi
2
p

sin ipx, N and M are the number of retained terms in
the sine series. Substitution of Eq. (10) into Eqs. (7) and (8) and application of the Galerkin method yield a set of nonlinear
ordinary differential equations

€qiv þ 2oivxiv _qiv þ G1ijqiv þ
XN
j¼1

ðG2ijqjv þ G3ijq
2
jv þ G4ijqjvqiv þ G5ijq

2
jvqivÞ

þ
XM
j¼1

ðG3ijq
2
jw þG5ijq

2
jwqivÞ ¼ G6ij sinOt þ G7ij cosOt þG8ijsin2 Ot; i ¼ 1;2; . . . ;N, (11)

€qiw þ 2oiwxiw _qiw þ G1ijqiw þ
XN
j¼1

G4ijqjvqiw þ
XN
j¼1

G5ijq
2
jvqiw þ

XM
j¼1

G5ijq
2
jwqiv ¼ 0; i ¼ 1;2; . . . ;M, (12)
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where the modal damping is used, xiv and xiw are the viscous damping ratio, oiv and oiw are the ith in-plane and out-of-
plane natural frequency, respectively. Moreover, the expressions of the other coefficients in Eqs. (11) and (12) are defined in
Appendix A. Neglecting any nonlinear, damping and excitation terms in Eqs. (11) and (12), the eigenvalue problem can be
applied to determine the in-plane and out-of-plane natural frequencies.

2.2. Static configuration of the inclined cable

Referring to Fig. 1, the vertical static equilibrium of the inclined cable is determined by the following nonlinear
equation [21]:

Hy00 ¼ �mgl cos yf1þ ðtanyþ y0Þ2g1=2. (13)

According to the small sag assumption, the y0 is enough small to ignore its square in Eq. (13). The static configuration of the
inclined cable can be approximately written as [21]

yðxÞ ¼
mgl cos y

2H
xð1� xÞ 1�

��
3
ð1� 2xÞ

n o
, (14)

where �� ¼ mgl sin y=H.

3. Method of solution

In this study, the frequency–response curve (frc) of the inclined cable is applied to investigate the spatial motion of the
cable. In order to construct the frc, firstly, the periodic motion of the cable, governed by Eqs. (11) and (12), should be
determined for a given excitation frequency O�. For this purpose, Eqs. (11) and (12) are rearranged in the normal form as a
set of first-order equations; that is

_y ¼ Ay þ Fðy;O; tÞ, (15)

where y ¼ f _qT;qTgT (q ¼ fq1v; . . . ; qjv; . . . ;qNv; q1w; . . . ; qjw; . . . ; qMwg
T, and T is the transpose),

A ¼
�C �K

I 0

� �
2ðNþMÞ�2ðNþMÞ

,

C is the modal damping matrix; I is the ðN þMÞ � ðN þMÞ unit matrix; K is the ðN þMÞ � ðN þMÞ linear stiffness matrix;
Fðy;O; tÞ ¼ ffK2 þ K3 þ PðO; tÞgT;0T

gT; K2 and K3 are the 1� ðN þMÞ vectors of quadratic and cubic nonlinear terms,
respectively; P is the 1� ðN þMÞ vector of excitation terms. To obtain the frc of the inclined cable, we firstly determine one
periodic solution of the equations of motion (Eq. (15)).

3.1. The shooting method

Generally, the periodic solutions are determined by solving a two-point boundary problem, which can be solved by
applying the shooting method [22]. Choosing an initial condition yð0Þ ¼ g, Eq. (15) is integrated by means of the
Runge–Kutta method over ½0; T�. The periodic solution, if one exists, can be found when the residual vector Gðg;OÞ satisfies
the following the equation:

Gðg;OÞ ¼ yðg;OÞ � g ¼ 0. (16)

For a given O, Eq. (16) includes 2ðN þMÞ nonlinear algebraic equations and 2ðN þMÞ unknowns, and can be solved
iteratively by using the Newton–Raphson iteration. To obtain the iterative scheme, we expand Eq. (16) in a first-order
Taylor series, and obtain

qy

qg

� �ðiÞ
� I

" #
Dgðiþ1Þ ¼ �GðgðiÞ;OÞ, (17)

where the superscripts have been added to indicate the iteration step. From Eq. (17), it is clear that the matrix qy=qg must
be determined at t ¼ T . To obtain this matrix, we differentiate both sides of Eq. (15) and the initial condition with respect to
g, and obtain the following equations:

q
qt

qy

qg

� �
¼

q
qy
ðAy þ FÞ

qy

qg
;

qy

qg
ð0Þ ¼ I. (18)

According to the shooting method, if an initial guess gð0Þ of the periodic solution g� for a given O ¼ O� is chosen, the
algorithm for the ðiþ 1Þth iteration ði ¼ 0;1;2; . . .Þ is:
1.
 Numerical integration: Supply the initial condition gðiÞ; integrate Eqs. (15) and (18) simultaneously over ½0; T� by applying
the Runge–Kutta method.
2.
 Obtain correction Dgðiþ1Þ: Evaluate the matrix and vector appearing in Eq. (17) and solve for the correction Dgðiþ1Þ.
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3.
 Convergence check: Test whether kDgðiþ1Þk(where k � k denotes the Euclidian vector norm) satisfies a certain
convergence criterion or not. If the convergence criterion is satisfied, the periodic solution g� ¼ gðiÞ has been obtained.
If not, the solution is updated (i.e., gðiþ1Þ ¼ gðiÞ þ Dgðiþ1Þ), and return to Step 1.

Based on the algorithm mentioned above, a Mathematica code is developed to seek the periodic solution of Eq. (15) in this
study. Moreover, the eigenvalues of the matrix qy=qgjg� are used to determine the stability of the periodic solutions. The
stability of the periodic solution is classified as follows: if the maximum eigenvalue lies inside the unit circle in the
complex plane, the periodic solution is stable, otherwise the periodic solution is unstable.

3.2. The continuation technique

After the periodic solution g� at O ¼ O� is determined, the continuation technique [22] can be used to determine the
frequency–response curves of the suspended cable as the non-dimensional excitation frequency O changes. In this spirit,
we introduce the arc-length parameter s as an independent variable and consider the parameter O as an unknown variable
as well, so that g � gðsÞ, O � OðsÞ. From Eq. (16), we can obtain

qy

qg
� I

� �
qg
qs
þ

qy

qO
qO
qs
¼ 0. (19)

Similar to the shooting method, we should evaluate the matrix qy=qO at t ¼ T . To evaluate qy=qO, we differentiate Eq. (15)
and the initial condition yðgð0Þ;Oð0ÞÞ ¼ gð0Þ with respect to O and obtain

d

dt

qy

qO

� �
¼

q
qy
ðAy þ FÞ

qy

qO
þ

qF

qO
;

qy

qO
ð0Þ ¼ 0. (20)

Integrating Eq. (20) from t ¼ 0 to T, we can obtain qy=qO. However, Eq. (19) consists of 2N linear algebraic equations and
2N þ 1 unknowns. Therefore, to have the same number of equations as the unknowns, we introduce the arc-length
equation

qg
qs

� �2

þ
qO
qs

� �2

¼ 1. (21)

Solving Eqs. (19) and (21), we can determine the tangent vector ðqg=qs; qO=qsÞ, then we can predict values of g and O by
taking a step Ds

g ¼ g� þ
qg
qs

Ds and O ¼ O� þ
qO
qs

Ds. (22)

Because the tangent predictor is used in Eq. (22), these predicted values must be corrected through the Newton–Raphson
scheme. And the procedure described above can be carried out until the periodic solution branches are traced.

4. Numerical results and discussions

A stay cable of the Dongting Lake Bridge was chosen as an example to verify the spatial motions of the cable. The bridge
is a three-tower prestressed concrete cable-stayed bridge in China. It employs three towers to support its deck through 222
stay cables, forming two main spans of 310 m each, and two side spans of 130 m each. The dimensional parameters and
material properties of the sample stay cable are as follows [23]: cable span l ¼ 121:9 m; inclined angle y ¼ 35:2�; diameter
D ¼ 119 mm; initial tension H ¼ 3150 kN; elastic modulus E ¼ 2:0� 105 MPa; mass per unit length m ¼ 51:8 kg=m. Table 1
shows the first four natural frequencies of in-plane and out-of-plane modes. These results show perfect agreement with
Irvine theory [21]. Moreover, the in-plane results are basically in agreement with the measured ones [23]. The small
difference between them can be seen. The difference is due to the fact that the design value of initial tension is used to
determine the natural frequencies. Obviously, the real initial tension will lead to smaller difference.

In general, the damping ratio of the cable includes the viscous damping ratio and the aerodynamic damping ratio.
However, it is very difficult to obtain the aerodynamic damping ratio. Therefore, only the viscous damping ratio is
considered. The measured damping ratios of the cable for the first 10 in-plane modes are very small, as shown in Ref. [23],
Table 1
Natural frequencies of the inclined cable (Hz).

In-plane

mode

Present Results of Irvine

theory [21]

Full-scale

measurement [23]

Out-of-

plane mode

Present Results of Irvine

theory [21]

Full-scale

measurement [23]

1 1.0157 1.0157 1.07 1 1.0114 1.0114 –

2 2.0229 2.0229 2.14 2 2.0229 2.0229 –

3 3.0346 3.0346 3.20 3 3.0344 3.0344 –

4 4.0459 4.0459 4.23 4 4.0459 4.0459 –
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ranging from about 0.079 percent to almost 0.178 percent. The constant viscous damping ratio xiv;w ¼ 0:1 percent for all
the in-plane and out-of-plane modes is chosen for numerical investigation for simplicity. To guarantee the accuracy of the
solutions in this study, the first four in-plane and out-of-plane modes (N ¼ M ¼ 4) are included. Although the sine series
show slow convergence rate when they are used to construct a so-called control-oriented model [24], these modes can lead
to significantly reasonable numerical results for the inclined cable with very small sag [25]. Moreover, in order to include
the contributions of all these modes, the frcs of the point at the 4

9 span of the cable are computed.
In this study, three types of motion of the support were investigated: (1) small-amplitude motion; (2) middle-amplitude

motion and (3) large-amplitude motion. Also the effects of the inclined angle on the nonlinear response are examined.
4.1. Small-amplitude motion (z0 ¼ 0:0001)

In this case, the amplitude of the support motion is assumed to be 0.0001, which corresponds to the deck/tower
amplitude of 1.22 cm. Fig. 2 shows the steady-state dynamic maximum amplitudes of the transverse and vertical
displacements of the inclined cable as the excitation frequency varies. Where the maximum amplitudes of the
displacements are defined as

Vmax ¼ max
t2j0;Tj

X4

i¼1

fiðxÞqivðtÞ þ xz0 cos y sinOt

( )
x¼4=9

; Wmax ¼ max
t2j0;Tj

X4

i¼1

fiðxÞqiwðtÞ

( )
x¼4=9

. (23)

Overall, the frcs of in-plane motion are, as expected, of the hardening type in the four resonance regions, where the cubic
nonlinearity due to the stretching dominates the nonlinear response. For the case of the first primary resonance region
(O 	 1:0) considered in Fig. 2a, the frc of in-plane motion exhibits the nonlinear vibration characteristics with relatively
simple pattern. And a narrow multi-value region of the in-plane motion due to two turning point is observed. Moreover, no
non-planar motion is excited. In this study, a single cable is applied to investigate the nonlinear vibration character of stay
cable subject to the support motion. Obviously, it cannot describe the interactions between the cable and deck in cable-
stayed bridge. Due to the coupling between cable-dominant (local) mode and beam-dominant (global) mode in the cable-
stayed beam [12], the sine functions do not accurately describe the local mode in the cable-stayed beam. In fact, when
Fig. 2. Frequency–response curve of the inclined cable with z0 ¼ 0:0001: (a) O 	 1:0, (b) O 	 2:0, (c) O 	 3:0 and (d) O 	 4:0.
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O 	 1:0, the vertical motion is one-to-one resonant with first local mode, the global and local modes are strongly coupling
in this case. Therefore, the hybrid modes are born as the result of combination of the global and local modes [11,12].

When the excitation frequency increases to about 2.0, significant differences of the frcs of in-plane and out-of-plane
motions are observed (Fig. 2b). As the excitation frequency increases from 1.98, the frc of the cable undergoes a period-
doubling bifurcation at Point AðA0Þ (O 	 1:986), which results that the planar motion loses its stability, and the nonlinear
response of the cable becomes suddenly non-planar with a significant sudden increase from zero when the excitation
frequency is further increased from Point C. Then a further increase in the excitation frequency O leads to a very rapid
continuous increases in the amplitude of the out-of-plane motion, and a very slow but continuous increases in the
amplitude of the in-plane motion until another bifurcation occurs at Point BðB0Þ, where the amplitude of the out-of-plane
motion is significantly larger than the amplitude of the in-plane motion. In this case, the coupling motion between in-plane
motion and out-of-plane motion has become significant. Moreover, if the excitation frequency O further increases from this
point, there exist stable non-planar motion and unstable non-planar motion simultaneously. And the amplitude of non-
planar motion is nearly saturated in the frequency region O 2 ð2:032;2:054Þ. It is also noted that the nonlinear response of
the cable will be dominated by the out-of-plane motion when the out-of-plane motion due to the period-doubling
instability in the 1

2 subharmonic resonance region is excited.
To better understand the relations between the bifurcation mechanisms and the coupling motion of the cable,

Fig. 3 shows the amplitudes of the generalized coordinates of the out-of-plane motion as functions of the excitation
frequency, where the amplitudes indicate the maximum values of the generalized coordinates attained over one
excitation cycle. As seen from Fig. 3, due to the period-doubling instability at the Point AðA0Þ, the first out-of-plane mode
was indirectly excited. When the excitation frequency increases from the bifurcation Point BðB0Þ, the second out-of-plane
mode was excited. In this case, the excitation of the second out-of-plane mode is largely controlled by the nonlinear
interactions due to the one-to-one internal resonance [26,27]. This case of one-to-one internal resonance of inclined
cable between in-plane mode and out-of-plane mode has been investigated by Xu et al. [26] and Zhao et al. [27]. Their
results showed that the one-to-one internal resonance may lead to the couple motion of inclined cable. Moreover, because
the third and fourth out-of-plane modes were not excited in the 1

2 subharmonic resonance region, the frcs of these two
modes are not included in Fig. 3. It is also obvious from Fig. 3, the amplitude of the first out-of-plane mode is much larger
than that of the second one, therefore, the out-of-plane motion is mainly driven by parametric resonances due to the axial
inertia force.

It is very interesting to note that the stable non-planar motion loses its stability via a torus bifurcation at Point CðC0Þ
(O 	 2:066) (see Fig. 2b). Thus, the non-planar motion should become quasi-periodic. To demonstrate the existence of
quasi-periodic non-planar motion predicted by the current analysis, the Galerkin-discretized models are numerically
integrated by employing a fourth-order Runge–Kutta method, and the initial condition for the numerical integrations are
set to ones obtained by the continuation technique. Fig. 4a shows the steady-state time history of the motion at O ¼ 2:067.
It is observed that the amplitude of time history varies with 120–150 times the excitation period. And a Poincaré section of
the motion for the surface of section at t ¼ 0 ðmod 2pÞ is shown in Fig. 4b. The closed curve of the Poincaré section implies
that the non-planar motion of the cable is quasi-periodic with the modulation frequency incommensurate with the fast
frequency. Fig. 4c shows the cross-section trajectory of the point at the 4

9 span of the inclined cable. As can be seen, the
pattern of cross-section motion does not exhibit any symmetrical characteristic. As the excitation frequency increases from
2.061, the quasi-periodic motion undergoes a cascade of torus-doubling and the destruction of the torus (Fig. 4d–f),
resulting in the chaotic non-planar motion (Fig. 4g). However, this chaotic motion only exists in a very narrow frequency
range, and when the excitation frequency increases further, a jump phenomenon occurs, leading to the low amplitude
planar periodic motion.
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Fig. 4. The non-periodic motion of the inclined cable with z0 ¼ 0:0001: (a) time history, (b) Poincaré section, (c) cross-section trajectory when O ¼ 2:067;

Poincaré section: (d) O ¼ 2:069, (e) O ¼ 2:071, (f) O ¼ 2:073 and (g) O ¼ 2:074.

Fig. 5. Variations of the maximum and minimum axial tension with the excitation frequency.
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Depending on the amplitude of the out-of-plane motion, excited by different bifurcation mechanisms, the tension of the
inclined cable becomes significantly different. To investigate the relations between the tension and the bifurcation
mechanisms, the non-dimensional axial total tension HT are considered, defined as

HT ¼ 1þ az0 sin y sinOt þ a
X4

i¼1

qiv

Z 1

0
y0f0iðxÞdxþ

a
2

X4

i¼1

ðqivqiv þ qiwqiwÞ

Z 1

0
f0iðxÞf

0
iðxÞdx, (24)

where the quasi-static assumption and the orthonormality conditions of the sinusoidal mode are applied. It can be seen
that the value of the axial tension does not depend on the coordinate x. This is due to the facts that we assumed that the
inclined cable stretched in a quasi-static manner, and the corresponding axial inertia has been eliminated. Fig. 5 illustrates
the maximum and minimum values of the axial total tension as functions of the excitation frequency. For the minimum
amplitudes of the axial tension, there exist two sharp points, as the excitation frequency increases past the two bifurcation
points. Whereas, only when the one-to-one internal resonance of the cable is excited, the sharp phenomena occurs on the
maximum amplitudes branch of the axial tension. Through the above discussion, we can also conclude that the mean value
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of the axial tension must undergo the sharp phenomena as different bifurcations occurs. So, to more accurately design and
control the inclined cable in the engineering fields, the coupling motion of the cable should be determined. In this study,
the quasi-static assumption has been applied to obtain the condensed model of the inclined cable. However, this procedure
omits the nonlinear coupling of longitudinal/transversal motion of the inclined cable. In this respect, Srinil and Rega [28]
has investigated the effects of the quasi-static assumption on the nonlinear dynamics of shallow cables. Their results
showed that the quasi-static assumption may lead to significant quantitative and/or qualitative discrepancies in nonlinear
dynamic and underestimated results for the axial tensions [28]. Therefore, a so-called kinematically non-condensed model
[28] should be used to obtain more accurate axial tensions.

Fig. 2c illustrates the maximum amplitudes for the in-plane and out-of-plane motions as functions of the excitation
frequency in the 1

3 subharmonic resonance region (O 	 3:0). Globally, the frcs of in-plane and out-of-plane motions are
similar to the ones obtained by Xu et al. [26] and Zhao et al. [27]. Therefore, the inertia force due to the transverse
component of the support motion, dominates the nonlinear response of the inclined cable in this case. Referring to Fig. 2c,
the out-of-plane motion due to the one-to-one internal resonance, emerges from the Point DðD0Þ. Also the lower amplitude
out-of-plane motion can be observed in the frequency region O 2 ð3:034;3:045Þ. This non-planar motion can lose stability
via a torus bifurcation at Point FðF0Þ, leading to a quasi-periodic motion, then a cascade of torus-doubling can be traced.
However, no chaotic motion occurs as the excitation frequency increases further. Overall, the motion character and the
Poincaré sections of the inclined cable for this case are very similar to the ones shown in the Fig. 4. Therefore, these results
are not reported here. Compared with the peak of the in-plane motion shown in Fig. 2b, the peak does not tremendously
reduce in this case. This may be due to the existence of combinational resonance such as O 	 o1v þo2v, which results in
the observable contribution of the first and second in-plane modes.

When the excitation frequency increases to about 4.0, Fig. 2d shows the frcs of the in-plane and out-of-plane cable
motions when O 	 4:0. Similar to Fig. 2b, due to the period-doubling instability, the non-planar motion is excited. However,
the fourth out-of-plane mode is not indirectly excited via the one-to-one internal resonance. And the non-planar motion
loses its stability at Point GðG0Þ.

As clear in the frcs of the in-plane and out-of-plane cable motions shown in Fig. 2, non-planar motion regions, where
only unstable in-plane motions exist, are observed in the subharmonic resonance regions (O 	 2:0;3:0;4:0). So in these
regions, the inclined cable will exhibit steady non-planar motion with any initial conditions.
Fig. 6. Frequency–response curve of the inclined cable with z0 ¼ 0:0007: (a) O 	 1:0, (b) O 	 2:0, (c) O 	 3:0 and (d) O 	 4:0.
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4.2. Middle-amplitude motion (z0 ¼ 0:0007)

Generally speaking, the amplitude of the support motion determines the cable inertial force. Therefore, the strength
of the parametric resonance and primary external resonance increases as the amplitude of the support motion increases.
Fig. 6 shows the frcs of the in-plane and out-of-plane cable motions with middle-amplitude support motion. In this case,
the amplitude of the support motion is set to 0.0007. Compared with Fig. 2, the nonlinear responses induced by the middle-
amplitude support motions are not very dramatically different from the ones induced by the lower-amplitude motions in
the higher primary resonance regions. And significant changes of the nonlinear response of the inclined cable can be
observed in the primary resonance region (O 	 1:0) (see Fig. 6a). In this case, due to the one-to-one internal resonance, two
bifurcations of nonlinear cable response are observed at Points AðA0Þ and BðB0Þ, which lead to both stable and unstable non-
planar cable motions.

Referring to Fig. 6, due to the strength of the external resonance, the peaks of the in-plane and out-of-plane motions are
significantly enhanced in all resonance regions, and the turning point D on the frc of the in-plane motion in the 1

3
subharmonic resonance region (Fig. 6c) moves to left, resulting in the disappearance of the non-planar motion region.
Whereas, due to the strength of the parametric resonance, the width of non-planar motion region increases in the 1

2 and 1
4

subharmonic resonance regions (Fig. 6b and d). It is interesting to note that the unstable in-plane motion gains its stability
via a period-doubling bifurcation (Point C in Fig. 6b and Point E in Fig. 6d). And another unstable in-plane motions can
emerge from these points.

4.3. Large-amplitude motion (z0 ¼ 0:0014)

To ascertain the results obtained in the case of the middle-amplitude support motion, the nonlinear response of the
inclined cable subject to the large-amplitude support motion is investigated. The amplitude of the support motion used
here is z0 ¼ 0:0014.

Fig. 7 shows the variations of the maximum amplitude of the in-plane and out-of-plane nonlinear responses with the
excitation frequency in the resonance regions. As the amplitude of support motion increases further, the nonlinear
Fig. 7. Frequency–response curve of the inclined cable with z0 ¼ 0:0014: (a) O 	 1:0, (b) O 	 2:0, (c) O 	 3:0 and (d) O 	 4:0.
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response characteristics of the inclined cable become more pronounced in this case. Moreover, the width of non-planar
motion region increases further when the excitation frequency is close to 2.0 or 4.0 (Fig. 7b and d). However, compared
with the previous case, the frcs still do not exhibit any significant difference, even though the amplitude of support motion
is increased by 100 percent. As shown in Fig. 7a, when the stable non-planar motion in the primary resonance region
(O 	 1:0) occurs, the amplitude of the in-plane motion decreases, whereas the one of the out-of-plane motion increases
with a very fast rate as the excitation frequency increases. The reason may be attributed to the modal interaction between
the in-plane motion and out-of-plane motion caused by the one-to-one internal resonance. When the strength of the
modal interaction increases because the strength of the nonlinearity increases, more excitation energy is distributed to the
out-of-plane motion via this modal interaction mechanism.
4.4. Effects of the incline angle

Unlike the amplitude of support motion, when the incline angle decreases, the strength of the parametric resonance
decreases and the one of the external resonance increases. To investigate the effects of the incline angle, the incline angle
was adjusted to 16:2�, and all other parameters of the cable remained unchanged.

Fig. 8 illustrates the frcs of in-plane and out-of-plane motions with the amplitude of support motion: z0 ¼ 0:0001.
Compared with Fig. 2, in general, depending on the values of incline angles, the amplitude of the nonlinear response and
the effects of nonlinearity become significantly different. Although the effects of the nonlinearity strengthen, the non-
planar motions occur in the primary resonance region (O 	 1:0) (Fig. 8a), and non-planar motion regions broaden when
O 	 1:0;3:0.
4.5. Modal contribution ratio

The previous analysis given in the above section reveals that different modes dominate the nonlinear cable response
when the coupling motions occur. To determine the relation between the degree of modal contribution and the different
Fig. 8. Frequency–response curve of the inclined cable with y ¼ 16:2� and z0 ¼ 0:0001: (a) O 	 1:0, (b) O 	 2:0, (c) O 	 3:0 and (d) O 	 4:0.



ARTICLE IN PRESS

Fig. 9. The modal contribution ratio of in-plane and out-of-plane modes with O 	 2:0.

L. Wang, Y. Zhao / Journal of Sound and Vibration 327 (2009) 121–133132
bifurcation mechanisms, the modal contribution ratio (MCR) is determined, defined as

MCR ¼

R T
0 q2

i ðtÞdtP4
i¼1

R T
0 q2

iv
ðtÞdt þ

R T
0 q2

iw
ðtÞdt

n o . (25)

Fig. 9 shows the variation of the MCR for all the modes with different excitation frequencies in the 1
2 subharmonic

resonance region (O 	 2:0) when z0 ¼ 0:0001. It is observed from Fig. 9 that the nonlinear response is, as expected,
dominated by the second in-plane mode before the period-doubling instability occurs, and the visible contribution of the
first in-plane mode can be found. As the excitation frequency increases, the first out-of-plane mode governs the nonlinear
response. When the second out-of-plane mode is excited via the one-to-one internal resonance, the significant
contributions of the second in-plane and out-of-plane modes are observed. Clearly, the third and fourth out-of-plane
modes are not indirectly excited for all the cases.
5. Conclusions

The 3-D nonlinear dynamic model of the inclined cable subject to the support motion is developed, and is applied to
investigate the spatial motion of the cable. The numerical integration gives details of the non-periodic motion of the
inclined cable occurring in the primary resonance region.

Numerical results have been obtained to explore the non-planar motion of the inclined cable and to examine the effects
of the amplitudes of the support motion and the inclined angle on the nonlinear response of the cable. It is shown that the
period-doubling instability and the nonlinear interaction due to the one-to-one internal resonance may result in the non-
planar motion. They also play a significant role on the maximum and minimum values of the axial tensions. For the cable
with large inclined angle, the out-of-plane motion dominates the nonlinear response when the non-planar motion due to
the period-doubling instability is excited. In addition, the spatial motions of the inclined cable are much more susceptible
to the inclined angle than the amplitude of the support motion.
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Appendix A

The coefficients of Eqs. (11) and (12) are given by

G1ij ¼ i2 1þ az0 sin y sinOt þ
1

2
az2

0cos2y sin2 Ot

� �
; G2ij ¼

a
p2

Z 1

0
y0f0iðxÞdx

Z 1

0
y0f0jðxÞdx,
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G3ij ¼
a
2

j2
Z 1

0
y0f0iðxÞdx; G4ij ¼ ai2

Z 1

0
y0f0jðxÞdx,

G5ij ¼
a
2

i2ðjpÞ2; G6ij ¼ z0 cos yO2
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xfiðxÞdx�
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z0 sin y
Z 1
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G7ij ¼ �2xiiz0 cos yO
Z 1
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xfiðxÞdx; G8ij ¼

a
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0 cos2 y

Z 1

0
y00fiðxÞdx. (A.1)
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